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Despite the fact that as many as 25% of the children diagnosed with autism spectrum disorders are nonverbal,
surprisingly little research has been conducted on this population. In particular, the mechanisms that underlie their
absence of speech remain unknown. Using diffusion tensor imaging, we compared the structure of a language-related
white matter tract (the arcuate fasciculus, AF) in five completely nonverbal children with autism to that of typically
developing children. We found that, as a group, the nonverbal children did not show the expected left–right AF
asymmetry—rather, four of the five nonverbal children actually showed the reversed pattern. It is possible that
this unusual pattern of asymmetry may underlie some of the severe language deficits commonly found in autism,
particularly in children whose speech fails to develop. Furthermore, novel interventions (such as auditory-motor
mapping training) designed to engage brain regions that are connected via the AF may have important clinical
potential for facilitating expressive language in nonverbal children with autism.
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Introduction

Autism spectrum disorder (ASD) is a developmen-
tal condition that affects one in 110 children. One
of the core diagnostic features of ASD relates to im-
pairments in language and communication. It has
been estimated that up to 25% of the individuals
with ASD lack the ability to communicate with oth-
ers using speech sounds, and many of them have
limited vocabulary in any modality, including sign
language.1,2 Severe deficits in communication not
only diminish the quality of life for affected individ-
uals, but also present a lifelong challenge for their
families.

The ability to communicate verbally is consid-
ered to be a positive prognostic indicator for chil-
dren with ASD.3 Unfortunately, few techniques
are available that can reliably produce improve-
ments in speech output in nonverbal children
with ASD.4 Recently, our laboratory has developed
a novel intonation-based intervention, auditory-
motor mapping training (AMMT), which aims

to facilitate speech output and vocal production
in nonverbal children with ASD.5,6 One of the
unique features of this intervention is that it pro-
motes speech production directly. The acquisition
of basic vocal output will allow these children to
eventually participate in speech therapy that fo-
cuses on verbal expression as a primary means of
communication.

In addition to the behavioral data collected as
part of the ongoing treatment study, we have
also acquired neuroimaging data in a subset of
our nonverbal participants to identify potentially
atypical language-related characteristics in this
understudied population. Previous neuroimaging
studies have shown that high-functioning verbal
individuals with autism typically have larger brains,
more gray matter, and possibly more local connec-
tions, but fewer long-range connections than typi-
cally developing controls.7,8 Interestingly, a reversal
of the usual left–right asymmetry (found in typi-
cally developing individuals) is present in the infe-
rior frontal gyrus, with larger volumes in the right
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hemisphere of individuals with autism.9,10 In con-
trast, a smaller right volume in autism has also been
reported.11 Some studies have shown smaller vol-
umes of the left planum temporale,12,13 whereas
other studies have reported a reduction in volume
in both hemispheres.14 A recent report suggested a
general loss of typical lateralization in tracts that
interact with the fusiform gyrus.15 Furthermore,
functional imaging studies of high-functioning ver-
bal individuals with autism have shown relatively
normal temporal lobe activation, but reduced in-
ferior frontal activation during semantic language
tasks.16 However, no studies to date have examined
the brains of nonverbal children with ASD.

Here, we report preliminary data from our neu-
roimaging study on completely nonverbal children
with autism. We investigated possible differences
in a language-related white matter tract, the arcu-
ate fasciculus (AF), using diffusion tensor imaging
(DTI) and comparing their results to those of age-
matched, typically developing children. Specifically,
the AF is a language-related tract that connects brain
regions involved in feedforward and feedback con-
trol of vocal output, and the mapping of sounds to
articulatory motor actions.17–21 Because of its role
in speech production, we investigated structural dif-
ferences in the AF of nonverbal children with autism
with those of typically developing children.

Method

Participants
A total of 10 children underwent MRI scanning.
There were five completely nonverbal children with
ASD and five typically developing children (see
Table 1 for participant characteristics). For the non-
verbal children, the diagnosis of autism was made
by pediatric neurologists and neuropsychologists
prior to enrollment. We confirmed the partici-
pants’ diagnoses using the childhood autism rat-
ing scale (CARS). “Nonverbal” was defined as hav-
ing the complete absence of intelligible words. All

participants had previously received speech therapy
for at least 18 months and demonstrated minimal
progress in speech acquisition (i.e., no intelligible
words) based on speech-language pathologist and
parent reports. Their minimal speech production
was also confirmed by our intake assessment, based
on clinical observations, and results from a phonetic
inventory and the expressive vocabulary test.22 The
typically developing children were recruited as part
of the laboratory’s longitudinal study on children,23

and all of them were classified as nonmusicians at
the time of the scan. The study was approved by
the Institutional Review Board of Beth Israel Dea-
coness Medical Center. The parents of all children
gave written informed consent prior to their partic-
ipation, and all procedures were conducted accord-
ing to the approved protocol.

Image acquisition
All participants underwent scanning using a 3-tesla
General Electric (Fairfield, CT) scanner, which in-
cluded T1-weighted, gradient-echo anatomical im-
ages (resolution: 0.93 × 0.93 × 1.5 mm3), and diffu-
sion tensor images. Diffusion-weighted images were
acquired using single-shot, spin-echo, echo-planar
imaging sequence (TE = 86.9 ms, TR = 10,000 ms,
FOV = 240 mm, matrix size = 128 × 128 voxels,
slice thickness = 5 mm (resolution: 1.87 × 1.87 ×
5.0 mm3), no skip, NEX = 1, axial acquisition, 25
noncollinear directions with b-value = 1000 s/mm2,
1 image with b-value = 0 s/mm2).

Preprocessing of DTI data
The diffusion data were preprocessed using FSL
version 4.1.4 (www.fmrib.ox.ac.uk/fsl). Using FSL’s
FMRIB diffusion toolbox (FDT), we first corrected
the diffusion data for eddy current and head motion
artifacts by affine multiscale two-dimensional reg-
istration. We then fitted a diffusion tensor model at
each voxel, which yielded lambda values for each
principal eigenvector and fractional anisotropy.

Table 1. Participant characteristics

Nonverbal ASD (n = 5) Typically developing (n = 5)
Comparison

Mean SD Range Mean SD Range P-value

Age (years) 6.7 1.2 5.8–8.8 7.0 0.9 6.2–8.5 0.175

Gender 3 males, 2 females 3 males, 2 females

Ann. N.Y. Acad. Sci. 1252 (2012) 332–337 c© 2012 New York Academy of Sciences. 333



Arcuate fasciculus of nonverbal children with ASD Wan et al.

Fiber tracking parameters were estimated using
a probabilistic tractography method based on a
multifiber model, and applied using tractography
routines implemented in FSL’s FDT toolkit (5,000
streamline samples, 0.5-mm step lengths, curvature
threshold of 0.2, and modeling 2 fibers per voxel to
take into account crossing fibers).24,25

Tractography of the arcuate fasciculus.
A single rater drew the regions of interest (ROI) of
the arcuate fasciculus—a curved fiber bundle that
connects the posterior portion of the temporal lobe
and the temporo-parietal junction with the infe-
rior frontal lobe26—on both hemispheres in diffu-
sion space. This rater was blind to whether partici-
pants were typically developing or had autism. The
seed ROI was drawn in the white matter under-
lying the pars opercularis of the posterior inferior
frontal gyrus on a sagittal slice of the FA map. Two
waypoint ROIs were drawn: one on a coronal slice in
the sensory-motor region covering the superior lon-
gitudinal fasciculus and another on a sagittal slice
in the white matter underlying the posterior middle
temporal gyrus. Exclusion masks were drawn axi-
ally in the external capsule, coronally in the region
posterior to the temporal gyrus, and sagittally in
the region medial to the fiber bundle in order to
exclude fiber projections that were not part of the
AF. The volume of each anatomical ROI was con-
strained such that a similar size ROI was used across
the two hemispheres to minimize potential bias
(P > 0.9).

Results

Fiber tracking reliably identified the arcuate fascicu-
lus on both the left and right hemispheres of all 10
children. Figure 1 shows the average volumes of the

Figure 1. Total average volumes of the left and right AF of
the nonverbal children with ASD and the typically developing
children.

left and right AF for the two groups of children. For
each child, we calculated a laterality index (LI) =
(left AF volume – right AF volume)/(left AF volume
+ right AF volume), where indices greater than zero
indicate leftward asymmetry, and indices less than
zero indicate rightward asymmetry. Consistent with
the literature on the AF,27 the typically developing
children in our sample exhibited the usual leftward
asymmetry (median LI = 0.166, range = 0.013 to
0.586). The nonverbal children, however, did not
show the usual leftward pattern of asymmetry (me-
dian LI = –0.168, range = –0.940 to 0.120). To con-
firm that the two groups showed different patterns
of laterality, a nonparameteric Mann–Whitney test
was conducted, which revealed significant distribu-
tions of the two groups (P = 0.016). As illustrated in
Figure 2, all five typically developing children
showed greater AF tract volume in the left hemi-
sphere compared to the right hemisphere, whereas
four of the five nonverbal children with autism
showed the reversed pattern of asymmetry (larger
right than left AF volumes).

Discussion

In this study, we sought to examine potential struc-
tural brain abnormalities in completely nonverbal
children with autism. Using DTI, we found that the
arcuate fasciculus, a major language-related white-
matter pathway in the brain, showed an overall
hemispheric asymmetry reversal in a group of com-
pletely nonverbal children with autism compared to
typically developing children. This abnormal struc-
ture of the AF may underlie some of the severe lan-
guage deficits in autism, particularly in children who
never develop speech.

Results from the present study converge with
some of the previous imaging studies on high-
functioning verbal individuals with autism. Using
structural MRI, a reversal of the usual left–right
asymmetry has been observed in the right inferior
frontal gyrus of high-functioning individuals with
autism, although smaller right frontal volumes in
autism have also been reported. Similarly, smaller
volumes of the left planum temporale have been
observed, but other research has reported a reduc-
tion in both hemispheres.13,28 The inconsistent find-
ings reported by these structural imaging studies
may be attributable, in part, to the heterogeneity
in linguistic abilities among individuals included in
these studies. Indeed, individuals with Asperger’s
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Figure 2. Images showing the left (yellow) and right (green)
AF of all 10 children (left panel = nonverbal ASD; right
panel = typically developing controls). For display purposes,
only the tracts of one child are superimposed onto their own FA
image.

syndrome (who have no language delay) have been
found to have less gray matter than individuals
with autism (who have atypical language develop-
ment).29 Thus, this finding highlights the impor-
tance of assessing language skills as a differentiating
variable.

Two recent studies have also investigated the role
of the arcuate fasciculus in autism. However, one
study scanned a more heterogeneous group of chil-

dren, including those who were not only verbal
but also carried the diagnosis of Asperger’s syn-
drome,30 while another study scanned only verbal
high-functioning adolescents.31 Relative to controls,
individuals on the autism spectrum were found to
have longer fibers in the right arcuate fasciculus30

and less lateralized fractional anisotropy,31 but no
differences in volume were observed. Our study
extends these previous findings in two important
ways. First, we recruited a relatively homogenous
group of individuals who were completely nonver-
bal. Second, we used a probabilistic (rather than
a deterministic) algorithm, which is less suscepti-
ble to regional measurement artifacts and problems
concerning crossing fibers.24 Probabilistic tractog-
raphy approaches have been shown to produce bet-
ter results in areas of crossing fibers, with superior
reconstruction of fibers at borders of anatomical
structures, and significantly more sensitive than de-
terministic approaches.32

The AF is a major white-matter tract involved
in language and speech processing, and thus, may
also be associated with the integration of auditory
and motor functions. Because it runs through the
premotor and motor cortex, it has been implicated
in the mapping of sounds to articulatory actions,
the coordination and planning of motor actions
for speech production, as well as the monitoring
of speech production and language learning.19,33

Based on observations made in our laboratory,
many nonverbal children with autism have speech–
motor planning difficulties, and their deficits could
be explained, in part, by the abnormal asymmetry of
the AF found in the present study. More importantly,
because AMMT is an intervention that trains the as-
sociation between sounds and articulatory actions
through rhythmic bilateral motor activities and rep-
etitions of intoned words,5 its potential in facilitat-
ing speech output in nonverbal children with autism
may lie in its ability to engage a network of brain
regions (e.g., the AF) that may be dysfunctional in
autism.34,35

In the present study, a relatively short DTI se-
quence (less than 5 min) was used to minimize
movement artifacts in our group of nonverbal chil-
dren with autism. The resulting voxels from this
sequence were nonisotropic, which means that par-
tial volume effects and angular resolution could
vary along different axes, thus limiting the degree
to which comparisons can be made between tracts
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that are oriented along these different axes. Despite
this limitation, however, our data revealed signifi-
cant volume differences across the two hemispheres
between nonverbal children with autism and typi-
cally developing children, while any systematic er-
rors associated with our DTI sequence should be
evident across all individuals.

This is a preliminary study that examined struc-
tural abnormalities in the arcuate fasciculus specifi-
cally in completely nonverbal children with autism.
Future studies on this understudied population
could test a larger sample of children; use higher
resolution and isotropic scanning parameters if pos-
sible, considering that these children may not be
sedated during scanning sessions; and examine the
structure of other language-related tracts, such as
the uncinate fasciculus and the extreme capsule fiber
tract. Finally, it would be interesting to examine
whether the atypical asymmetry observed in the
nonverbal children is also present in other family
members. Identifying brain abnormalities in these
children will help with the development and refine-
ment of effective treatment programs.
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